
ACM SIGPLAN ‘92 Conference on Programming Language Design and Implementation, San Francisco, June 1992.

Abstract: SELF’s debugging system provides complete

source-level debugging (expected behavior) with globally

optimized code. It shields the debugger from optimizations

performed by the compiler by dynamically deoptimizing

code on demand. Deoptimization only affects the procedure

activations that are actively being debugged; all other code

runs at full speed. Deoptimization requires the compiler to

supply debugging information at discrete interrupt points;

the compiler can still perform extensive optimizations

between interrupt points without affecting debuggability. At

the same time, the inability to interrupt between interrupt

points is invisible to the user. Our debugging system also

handles programming changes during debugging. Again,

the system provides expected behavior: it is possible to

change a running program and immediately observe the

effects of the change. Dynamic deoptimization transforms

old compiled code (which may contain inlined copies of the

old version of the changed procedure) into new versions

reflecting the current source-level state. To the best of our

knowledge, SELF is the first practical system providing full

expected behavior with globally optimized code.

1. Introduction

SELF is a pure object-oriented language designed for rapid

prototyping, increasing programmer productivity by maxi-

mizing expressiveness and malleability [US87]. SELF’s

pure message-based model of computation requires exten-

sive optimization to achieve good performance [CU91,

HCU91]. Without aggressive procedure integration

(inlining), for example, performance would be abysmal

[Cha92]. But an interactive programming environment also

demands rapid turnaround time and complete source-level

debugging. To make SELF practical, the system must

provide interpreter semantics at compiled-code speed,

combining expected behavior [Zel84] with global optimiza-

tion.

Most existing systems do not support the debugging of opti-

mized code. Programs can either be optimized for full

speed, or they can be compiled without optimizations for

full source-level debugging. Recently, techniques have been

developed that strive to make it possible to debug optimized

code [Hen82, Zel84, CMR88]. However, none of these

systems is able to provide full source-level debugging. For

example, it generally is not possible to obtain the values of

all source-level variables, to single-step through the

program, or to change the value of a variable. Optimization

is given priority over debugging, and consequently these

systems provide only restricted forms of debugging.

To the best of our knowledge, SELF is the first practical

system providing full expected behavior with globally opti-

mized code. Compared to previous techniques, our use of

dynamic deoptimization and interrupt points permits us to

place fewer restrictions on the kind of optimizations that can

be performed while still preserving expected behavior.

The remainder of this paper is organized as follows. Section

2 discusses the optimizations performed by the SELF

compiler and how they affect debugging. Section 3

describes how optimized code can be deoptimized, and

section 4 explains how running programs can be changed.

Section 5 discusses the implementation of common debug-

ging operations. Section 6 discusses the benefits and limita-

tions of our approach, and section 7 examines its run-time

and space cost. Section 8 relates this paper to previous

work, and section 9 contains our conclusions.

2. Optimization and debugging

This section briefly outlines the optimizations that the SELF

compiler performs and discusses some of the problems they

cause for the debugger.

Debugging Optimized Code with Dynamic Deoptimization

Urs Hölzle

Computer Systems Laboratory

CIS 57

Stanford University

Stanford, CA 94305

urs@cs.stanford.edu

Craig Chambers

Dept. of Computer Science and Engineering

Sieg Hall, FR-35

University of Washington

 Seattle, WA 98195

chambers@cs.washington.edu

David Ungar

Sun Microsystems Laboratories

MTV29-116

2500 Garcia St.

Mountain View, CA 94043

ungar@eng.sun.com

This work has been supported in part by the Swiss National Science
Foundation (Nationalfonds), an IBM graduate student fellowship, NSF
Presidential Young Investigator Award # CCR-8657631, and by Sun, IBM,
Apple, Cray, Tandem, TI, and DEC.

2

2.1 Optimizations performed by the SELF

compiler

SELF uses dynamic compilation [DS84, CUL89]: instead of

compiling whole programs prior to execution, code is

generated incrementally at run-time and kept in a cache.

Whenever a source method is invoked which hasn’t already

been compiled, a new compiled method is created and

cached. (In the SELF system, source code is accessible at all

times so that methods can be (re-)compiled at any time.)

In addition to standard optimizations such as global constant

propagation, constant folding, and global register allocation,

our compiler relies extensively on three optimizations

which are important for pure object-oriented languages:

inlining, customization, and splitting [CUL89, CU90,

CU91]. Inlining reduces the call overhead and enables opti-

mizations which span source method boundaries. Customi-

zation creates multiple compiled copies of source methods,

each copy specialized for a particular receiver type.

Customization allows many dynamically-dispatched calls to

be statically bound and subsequently inlined. Splitting

creates multiple compiled copies of a source-level expres-

sion and optimizes each copy for a particular set of types.

Additionally, the compiler performs dead code elimination,

strength reduction, and global common subexpression elim-

ination of arithmetic expressions, loads, and stores. Redun-

dant computations are eliminated only if they cannot cause

observable side effects such as arithmetic overflow. The

compiler sometimes unrolls loops to avoid repeating type

tests in every iteration of the loop, which frequently has the

effect of hoisting invariant code out of loops. Low-level

optimizations such as delay slot filling are also performed;

more extensive instruction scheduling could easily be

supported but has not been implemented. Induction variable

elimination could be supported by extending the structure of

our debugging information.

Since it must always provide full source-level debugging,

the SELF compiler does not perform certain optimizations.

In general, dead stores cannot be eliminated, and the regis-

ters of dead variables cannot be reused without spilling the

variable to memory first. Both optimizations can be

performed, however, if there is no interrupt point within the

variable’s scope (see section 3.4). Finally, the SELF

compiler does not perform tail recursion elimination or tail

call elimination because they cannot be supported transpar-

ently: in general, it is not possible to reconstruct the stack

frames eliminated by these optimizations. Instead, iteration

is supported through a primitive which restarts execution of

the current scope. (The SELF language does not pre-define

common control structures such as if and while; such

control structures are user-defined).

2.2 Problems caused by optimization

The code transformations performed by global optimization

make it hard to debug optimized code at the source level.

Because optimizations delete, change, or rearrange parts of

the original program, they become visible to the user who

tries to debug the optimized program. This sections presents

some of the problems that must be solved to provide source-

level debugging of optimized code.

2.2.1 Displaying the stack

Optimizations such as inlining, register allocation, constant

propagation, and copy propagation create methods whose

activation records have no direct correspondence to the

source-level activations. For example, a single physical

stack frame may contain several source-level activations

because message sends have been inlined. Variables may be

in different locations at different times, and some variables

may not have run-time locations at all.

The example in Figure 1 shows the effects of inlining. The

physical stack contains three activations A’, C’, and F’. In

contrast, the source-level-stack contains additional activa-

tions which were inlined by the compiler. For example, the

activation B was inlined into A’, and so B does not appear in

the physical stack trace.

2.2.2 Single-stepping

To single-step, the debugger has to find and execute the

machine instructions belonging to the next source operation.

Optimizations such as code motion or instruction sched-

uling make this a hard problem: the instructions for one

statement may be interspersed with those of neighboring

statements, and statements may have been reordered to

execute out of source-level order. In contrast, single-step-

ping is simple with unoptimized code since the code for a

statement is contiguous.

2.2.3 Changing the value of a variable

Consider the following code fragment:

A’

C’

F’

A

C

D

E

F

B

Figure 1. Displaying the stack

physical stack source-level stack

i := 3;

j := 4;

k := i + j;

i := 3;

j := 4;

k := 7;

optimization

3

Since the expression i + j is a compile-time constant, the

compiler has eliminated its computation from the generated

code. But what if the program is suspended just before the

assignment to k and the programmer changes j to be 10?

Execution of the optimized code cannot be resumed since it

would produce an unexpected value for k. With unopti-

mized code, of course, there would be no problem since the

addition would still be performed by the compiled code.

2.2.4 Changing a procedure

A similar problem arises when an inlined procedure is

changed during debugging. Suppose that the program is

suspended just before executing the inlined copy of function

f when the programmer changes f because she has found a

bug. Obviously, execution cannot simply continue since f’s

old definition is hard-wired into its caller. On the other

hand, it would be easy to provide expected behavior with

unoptimized code: f’s definition could simply be replaced,

and the subsequent call to f would execute the correct code.

3. Deoptimization

None of the above problems would exist with unoptimized

code. If optimized code could be converted to unoptimized

code on demand, programs could be debugged easily while

still running at full speed most of the time. SELF’s debug-

ging system is based on such a transformation. Compiled

code exists in one of two states:

• Optimized code, which can be suspended only at

relatively widely-spaced interrupt points; at every

interrupt point, the source-level state can be

reconstructed, and

• Unoptimized code, which can be suspended at any

arbitrary source-level operation and thus supports all

debugging operations (such as single-stepping).

Section 3.1 explains the data structures used to recover the

source-level state from the optimized program state.

Sections 3.2 and 3.3 describe how optimized code can be

transformed into unoptimized code on demand, and section

3.4 discusses how interrupt points lessen the impact of

debugging on optimization.

3.1 Recovering the unoptimized state

To display a source-level stack trace and to perform deopti-

mization, the system needs to reconstruct the source-level

state from the optimized machine-level state. To support

this reconstruction, the SELF compiler generates scope

descriptors [CUL89] for each scope contained in a

compiled method, i.e., for the initial source method and all

methods inlined within it. A scope descriptor specifies the

scope’s place in the virtual call tree of the physical stack

frame and records the locations or values of its arguments

and locals (see Figure 2). The compiler also describes the

location or value of each subexpression within the compiled

method. This information is needed to reconstruct the stack

of evaluated expressions that are waiting to be consumed by

later message sends.

To find the correct scope for a given physical program

counter, the debugger needs to know the virtual program

counter (source position), i.e., the pair of a scope descrip-

tion and a source position within that scope. Therefore, the

debugging information generated with each compiled

method also includes a mapping between physical and

virtual program counters.

With the help of this information, the debugger can hide the

effects of inlining, splitting, register allocation, constant

propagation, and constant folding from the user. For

example, if the compiler eliminates a variable because its

value is a compile-time constant, the variable’s descriptor

would contain that constant. A straightforward extension of

the descriptor structure could be used to handle variables

whose values can be computed from other values (such as

eliminated induction variables).

struct ScopeDesc {

oop method; // pointer to the method object
ScopeDesc* caller; // scope into which this scope was inlined (if any)
int posWithinCaller; // source position within caller
ScopeDesc* enclosingScope; // lexically enclosing scope (if any)
NameDesc args[]; // descriptors for receiver and arguments
NameDesc locals[]; // descriptors for locals
NameDesc expressionStack[]; // descriptors for all subexpressions

};

struct NameDesc {

enum { const, loc } tag; // compile-time constant or run-time value
union {

oop value; // constant value
Location location; // run-time location

};

};

Figure 2. Pseudo-code declarations for scope data structures

4

A

B C

D

PC: 28

scope B, line 5

A

B

Scope descriptorsPhysical-to-virtual PC mapping Source-level stack

Program suspended at time t1

A

B C

D

A

C

Scope descriptorsPhysical-to-virtual PC mapping Source-level stack

Program suspended at time t2

DPC: 42

scope D, line 1

PC: 28

scope B, line 5

PC: 42

scope D, line 1

Figure 3. Recovering the source-level state

Physical stack

Physical stack

PC=28

PC=42

.

..

.

..

stack frame

of optimized

method

stack frame

of optimized

method

Figure 3 shows a method suspended at two different times.

When the method is suspended at time t1, the physical PC is

28 and the corresponding source position is line 5 of method

B. A stack trace would therefore display B being called by

A, hiding the fact that B has been inlined into A by the

compiler. Similarly, at time t2 the source-level view would

show D being called by C being called by A, displaying

three virtual stack frames instead of the single physical

stack frame. To display a complete stack trace, this process

is simply repeated for each physical stack frame

3.2 The transformation function

Our approach transforms an optimized method into one or

more equivalent unoptimized methods. For the moment, we

assume that only the topmost stack activation needs to be

transformed so that stack frames can easily be removed or

added; section 3.3 explains how to remove this restriction.

The deoptimizing transformation can then be performed as

follows:

1. Save the contents of the physical activation (stack

frame) which is to be transformed, and remove it from

the run-time stack.

2. Using the mechanisms described in the previous section,

determine the source-level (virtual) activations con-

tained in the physical activation, the values of their lo-

cals, and their virtual PC.

3. For each virtual activation, create a new compiled meth-

od and a corresponding physical activation. To simplify

the transformation function and subsequent debugging

activities, the new methods (the target methods) are

completely unoptimized: every message send corre-

sponds to a call, and no optimizations such as constant

folding or common subexpression elimination are per-

formed.

4. For each virtual activation, find the new physical PC in

the corresponding compiled method. Since the target

method is unoptimized, there will be exactly one physi-

cal PC for the given virtual PC. (This would not neces-

sarily be the case if the target methods were optimized.)

Initialize the stack frames created in the previous step by

filling in the return PC and other fields needed by the

run-time system, such as the frame pointer.

5

Figure 4. Transforming an optimized stack frame into unoptimized form

optimized
method

unoptimized
methods

optimized
stack frame

s
ta

c
k
 g

ro
w

s
 d

o
w

n
w

a
rd

s

unoptimized
stack frames

deoptimize

5. For each virtual activation, copy the values of all param-

eters, locals, and expression stack entries from the opti-

mized to the unoptimized activation. Since the

unoptimized method is a straightforward one-to-one

translation of the source method, all variables will be

mapped to locations in the target activation, and thus all

copied values will have an unambiguous destination.

(This would not necessarily be the case if the target

methods were optimized.) Furthermore, since the target

method is unoptimized, it does not contain any hidden

state which would need to be initialized (such as the

value of a common subexpression). Thus, together with

step 4, we have completely initialized the new stack

frames for all virtual activations, and the transformation

is complete.

Figure 4 illustrates the process. The transformation expands

an optimized stack frame containing three virtual activa-

tions into a sequence of three unoptimized stack frames,

thus creating a one-to-one correspondence between virtual

and physical frames.

Only those parts of the program which are actively being

debugged (e.g., by stepping through them) need to be trans-

formed. These parts will be the only parts of the program

running unoptimized code; all other parts can run at full

speed. No transformations are necessary just to inspect the

program state, as described in section 3.1.

3.3 Lazy deoptimization

But how can a stack frame be deoptimized when it is in the

middle of the stack, where new stack frames cannot be

inserted easily? To solve this problem, our current imple-

mentation always transforms stack frames lazily: deoptimi-

zation is deferred until control is about to return into the

frame (see Figure 5). For example, if the virtual activation

vf2 to be deoptimized is inlined in frame f in the middle of

the stack, f is not immediately deoptimized. Instead, the

return address of g (the stack frame called by f) is changed

to point to a routine which will transform f when g returns.

At that point, f is the topmost frame and is deoptimized.

Transforming only the most recent activation simplifies the

transformation process because no other stack frames need

to be adjusted even if deoptimization causes the stack

frames to grow in size.

Lazy deoptimization can simplify a system considerably,

but it may also restrict the debugging functionality. Our

system currently does not allow the contents of local vari-

ables to be changed during debugging because a variable

might not have a run-time location. In order to create a run-

time location for the variable, it might be necessary to trans-

form an activation in the middle of the stack, which our

system currently cannot do. However, this is not a funda-

mental problem; for example, the transformed stack frames

could be heap-allocated as described in [DS84]. An even

simpler solution would be to always allocate stack locations

for eliminated variables. These locations would be unused

during normal program execution but would spring into life

when the programmer manually changes the value of an

eliminated variable. Since the compiled code depended on

the old (supposedly constant) value, it would be invalidated

as if the programmer had changed the method’s source code

(see section 4).

Figure 5. Lazy deoptimization of stack frames

real stack frame f (includes vir-

tual activations vf1, vf2, and vf3)

s
ta

c
k
 g

ro
w

s
 d

o
w

n
w

a
rd

s

g returns

vf2

real stack frame g

deoptimization

vf1

vf3
vf2

vf1

vf3

every virtual activation

that was contained in f

now has its own real

stack frame

vf2

vf1

vf3

6

3.4 Interrupt points

If optimized programs could be interrupted at any instruc-

tion boundary, debugging optimized code would be hard,

since the source-level state would have to be recoverable at

every single point in the program. To ease the restrictions

that this would impose on optimization, an optimized SELF

program can be interrupted only at certain interrupt points†

where its state is guaranteed to be consistent. Notification of

any asynchronous event occurring between two interrupt

points is delayed until the next interrupt point is reached.

Currently, the SELF system defines two kinds of interrupt

points: method prologues (including some process control

primitives) and the end of loop bodies (“backward

branches”). This definition implies that the maximum inter-

rupt latency is bounded by the length of the longest code

sequence containing neither a call nor a loop end, typically

only a few dozen instructions. Because the latency is so

short, the use of interrupt points is not noticed by the

programmer. (If only sends were interrupt points, loops

without calls could not be interrupted.)

Interrupt points need to cover all possible points where a

program could be suspended; that is, they also need to

handle synchronous events such as arithmetic overflow. In

our system, all possible run-time errors are interrupt points

because all SELF primitives are safe: if the requested opera-

tion cannot be performed, the primitive calls a user-defined

error handler which usually invokes the debugger.

Once an optimized program is suspended, the current acti-

vation can be deoptimized if necessary to carry out debug-

ging requests. In an unoptimized method, every source point

is an interrupt point, and the program can therefore stop at

any point.

Since the debugger can be invoked only at interrupt points,

debugging information need be generated only for those

points. This reduces the space used by the debugging infor-

mation, but more importantly it allows extensive optimiza-

tions between interrupt points. Essentially, the compiler

may perform any optimization whose effects either do not

reach an interrupt point or can be undone at that point. For

example, the compiler can reuse a dead variable’s register as

long as there are no subsequent interrupt points within the

variable’s scope. The more widely-spaced interrupt points

are, the fewer restrictions source-level debugging imposes

on optimization.

Interrupt points also lessen the impact of garbage collection

on compiler optimization. Garbage collections can only

occur at interrupt points, and so the compiler can generate

† Interrupt points have been used in other systems before; see section 8 for
a discussion of the Deutsch-Schiffman Smalltalk-80 system.

code between interrupt points that temporarily violates the

invariants needed by the garbage collector [Cha87].

4. Updating active methods

During debugging, a programmer might not only change the

value of a variable but also the definition of a method. To

invalidate the compiled code affected by such a change, the

SELF system maintains dependency links between compiled

code and the objects representing source code methods

[CUL89]. For example, if a compiled method contains

inlined copies of a method that was changed, the compiled

method is discarded.

However, if a compiled method containing an inlined copy

of a changed method is active (i.e., has at least one activa-

tion), it cannot simply be discarded. Instead, the compiled

method must be replaced by a new compiled method before

execution can continue. Fortunately, deoptimization can be

used for this purpose. After the active compiled method has

been deoptimized, it will no longer contain any inlined

methods. When its execution continues, all subsequent calls

to the changed method will correctly invoke the new defini-

tion.

If the changed method itself is currently active, updating its

activation is hard. Fortunately, in SELF we don’t have to

solve this problem because in SELF’s language model, acti-

vations are created by cloning the method object. Once

created, the clone is independent from its original, so

changes to the original do not affect the clone.

Lazy transformation elegantly solves the problem of invali-

dated compiled methods in the middle of the stack: we

simply wait until the invalid method is on top of the stack,

then transform it. Lazy transformation is very desirable in

an interactive system since it spreads out the repair effort

over time, avoiding distracting pauses. Furthermore, it

handles sequences of changes well, for example when

reading in a file containing new definitions for a group of

related objects. With eager transformation, every new defi-

nition would cause all affected compiled methods to be

recompiled, and many methods would be recompiled

several times since they are likely to be affected by several

of the changes. With lazy transformation, these compiled

methods will be invalidated repeatedly (which is no

problem since invalidation is very cheap) but only trans-

formed once.

In conclusion, with our debugging mechanisms it is almost

trivial to support changing running programs. Our current

implementation consists of less than a hundred lines of C++

code on top of the previously described debugging function-

ality and the code maintaining the dependencies.

7

5. Common debugging operations

This section describes the debugging operations imple-

mented in the SELF system and outlines possible implemen-

tations of additional operations. With deoptimization, it is

relatively easy to implement common debugging operations

such as single-step and finish because these operations are

simple to perform in unoptimized code, and deoptimization

can supply unoptimized code for every program piece on

demand. In contrast, neither single-step nor finish could

generally be provided by previous systems for debugging

optimized code [Zel84, CMR88].

5.1 Single-step

Because every source point has an interrupt point associated

with it in a deoptimized method, the implementation of

single-stepping becomes trivial. The system deoptimizes the

current activation and restarts the process with the interrupt

flag already set. The process will relinquish control upon

reaching the next interrupt point, i.e. after executing a single

step.

5.2 Finish

The finish operation continues program execution until the

selected activation returns. It is implemented by changing

the return address of the selected activation’s stack frame to

a special routine that will suspend execution when the acti-

vation returns. Thus, the program is not slowed down during

the finish operation because it can run optimized code.

If the selected activation does not have its own physical

stack frame (because it was inlined into another method), its

stack frame is deoptimized using lazy deoptimization. In

this case, the program can still run optimized code most of

the time; only at the very end (when lazy deoptimization is

performed) does it run unoptimized code.

5.3 Next

The next operation (also called “step over”) executes the

next source operation without stepping into calls. That is,

the program will stop after the next source operation has

completed. Next can be synthesized by performing a single-

step, possibly followed by a finish (if the operation was a

call). Consequently, next is implemented by a few lines of

SELF code in our system.

5.4 Breakpoints and watchpoints

SELF currently supports breakpoints through source trans-

formation: the programmer inserts a breakpoint by simply

inserting a send of halt into the source method (halt

explicitly invokes the debugger). To implement breakpoints

without explicit changes by the programmer, the debugger

could perform this source transformation transparently.

Watchpoints (“stop when the value of this variable

changes”) are also easy to provide because SELF is a pure

object-oriented language, and all accesses are performed

through message sends (at least conceptually; the compiler

will usually optimize away such sends). To monitor all

accesses to an object’s instance variable x, we can rename

the variable to private_x and install two new methods x

and x: which monitor accesses and assignments, respec-

tively, and return or change private_x. The dependency

system will invalidate all code that inlined the old definition

of x or x: (i.e., that directly accessed or changed x).

6. Discussion

In this section, we discuss some of the strengths and weak-

nesses of our approach and assess its generality.

6.1 Benefits

Our debugging technique has several important advantages.

First, it is simple: the current implementation of the trans-

formation process consists of less than 400 lines of C++

code on top of the code implementing the debugging infor-

mation described in section 3.1. Second, it allows a loose

coupling between debugger and compiler—neither has to

know very much about the other. Third, it places no addi-

tional restrictions beyond those described in section 2 on the

kind of optimizations which can be performed by the

compiler. Thus, many common optimizations such as

inlining, loop unrolling, common subexpression elimina-

tion, and instruction scheduling can be used without

affecting debuggability. Finally, our method is well suited

for an interactive system since it is incremental: usually, at

most one stack frame needs to be converted as a result of a

user command.

6.2 Current limitations

Using unoptimized code during debugging introduces a

potential performance problem when the user decides to

continue execution. Execution should proceed at full speed,

but some of the stack frames may be unoptimized.

However, this problem usually is not severe: only a few

frames are running unoptimized code, and the unoptimized

code will be discarded as soon as these frames return. All

other parts of the system can run at full speed.

Methods containing loops could still pose a problem since

they could remain on the stack in unoptimized form indefi-

nitely. However, we currently are working to solve the more

general problem of adaptive compilation [HCU91]. With

adaptive compilation, methods are created in unoptimized

form first to minimize compile pauses. Later, the frequently-

used parts are automatically recompiled with optimization.

Therefore, a system with adaptive compilation would auto-

8

matically reoptimize any unoptimized loops created by

debugging. The current SELF system already contains a

primitive form of adaptive compilation.

6.3 Generality

The debugging approach presented here is not specific to

SELF and could be exploited in other languages as well. Our

system appears to require run-time compilation for deopti-

mization, but systems without run-time compilation could

include an unoptimized copy of every procedure in an

executable or dynamically link these in as needed.

For pointer-safe languages like Lisp, Smalltalk, or a pointer-

safe subset of C++, our approach seems directly applicable.

In pointer-unsafe languages† like C which allow pointer

errors, interrupt points might be more closely spaced. The

debugger could potentially be invoked at every load or store

where the compiler could not prove that no address fault

would occur. But even if interrupt points caused by unsafe

loads or stores were indeed very frequent, our approach

would still allow at least as many optimizations as other

approaches for source-level debugging.

Pointers into the stack require special care during deoptimi-

zation if the locations of such pointers are unknown. In this

case, the address of a stack variable potentially referenced

by a pointer may not be changed. However, this problem

could probably be solved at the expense of some stack space

by requiring the layout of optimized and unoptimized stack

frames to be identical.

6.4 Implementation status

The first implementation of the debugging system was

completed in the spring of 1991 (recovering the source-level

state of optimized programs was implemented in 1989).

Today’s system implements all functions described in

section 5 and is in daily use at several research institutions.

A source-level debugger (written in SELF by Lars Bak) is

also part of the system. The SELF implementation is avail-

able free of charge via ftp from self.stanford.edu.

7. Cost

Providing full source-level debugging in the presence of an

optimizing compiler does not come for free. In this section,

we examine the impact of our techniques on responsiveness,

run-time performance, and memory usage.

† In a way, true source-level debugging of unsafe languages is something of
an oxymoron: since programs can overwrite arbitrary memory regions, they
can always produce behavior which cannot be explained at the language
(source) level. For example, if an integer is erroneously stored into the
location of a floating-point variable, the resulting behavior cannot be
explained without referring to the particular integer and floating-point
representations used by the system.

7.1 Impact on responsiveness

Neither the deoptimization process nor the use of interrupt

points are perceptible to users. The compiler typically

creates the unoptimized methods in about one millisecond

on a SPARCStation 1, and thus the pauses introduced by

dynamic deoptimization are negligible. Interrupt points

increase the latency for user and system interrupts by only a

few microseconds because an interrupt point is usually

reached within a few dozen instructions after the run-time

system has set the interrupt flag. In summary, providing full

source-level debugging in the SELF system has not reduced

its responsiveness.

7.2 Impact on run-time performance

Ideally, the performance impact of full source-level debug-

ging could be measured by completely disabling it and re-

measuring the system. However, this is not possible because

source-level debugging was a fundamental design goal of

the SELF system. Disabling debugging support would

require a major redesign of the compiler and run-time

system if any better performance is to be achieved. Further-

more, the garbage collector already imposes some

constraints on the optimizer, such as the requirement that

live registers may not contain derived pointers (pointers into

the middle of objects). In many cases, the optimizations

inhibited by garbage collection are very similar to those

inhibited by debugging requirements, such as dead store

elimination and some forms of common subexpression

elimination [Cha87]. Thus, it would be difficult to separate

the impact of garbage collection on optimization from the

impact of full source-level debugging.

However, we have measured some effects of source-level

debugging in the SELF system. To determine the impact of

debugger-visible names, the compiler was changed to

release registers allocated to dead variables even if they

were visible at an interrupt point. The performance

improvement with the changed compiler was insignificant

(less than 2%) for a wide range of programs [Cha92]. That

is, the extension of variable lifetimes needed to support

debugging seems to incur virtually no cost in our system.

(One reason for this might be that SELF methods are typi-

cally very short, so that few variables are unused in signifi-

cant portions of their scope.)

The system currently detects interrupts by testing a special

register; each test takes two cycles on a SPARC. This

polling slows down typical programs by about 4%; some

numerical programs with very tight loops are slowed down

by up to 13% [Cha92]. With a more complicated run-time

system using conditional traps, the overhead could be

reduced to one cycle per check, and loop unrolling could

further reduce the problem for tight loops. Alternatively, we

could switch to a non-polling system where the interrupt

handler would patch the code of the currently executing

9

procedure to cause a process switch at the next interrupt

point.

While we could not measure the full performance impact of

our debugging scheme, inspection of the generated code

indicated no obvious debugging-related inefficiencies. In

fact, the current SELF system has attained excellent perfor-

mance, executing a set of benchmarks four to six times

faster than ParcPlace Smalltalk-80† and about half the speed

of optimized C [CU91].

7.3 Memory usage

The debugging and dependency information for compiled

methods is kept in virtual memory in the current SELF

system. Table 1 shows the memory usage of the various

parts of compiled methods relative to the space used by the

machine instructions. For example, the physical-to-virtual

PC mapping is about 17% the size of the actual machine

code. The column labelled “adaptive” represents the default

configuration where only often-used methods are optimized,

while the “optimized only” column represents a system

which always optimizes. The data were obtained from two

interactive sessions using the prototype SELF user interface

(written in SELF). Both runs represent more than 7 Mbytes

of compiler-generated data.

The space consumption can be split into three main groups.

The first group contains the method headers and the

machine instructions; together, these represent all the infor-

mation needed to actually execute programs. The second

group contains the dependency links needed to invalidate

compiled code after programming changes (see section 4).

The third group contains all debugging-related information:

the scope descriptors and the PC mapping (see section 3.1),

relocation information for the garbage collector (to update

† Smalltalk-80 is a trademark of ParcPlace Systems.

object pointers contained in the debugging information),

and the various objects representing the methods, message

name strings, and object literals corresponding to the

compiled code. This includes all information needed to

recompile methods but not the source code itself.‡

The space consumed by debugging information varies with

the degree of optimization. Optimized methods show a

higher relative space overhead than unoptimized methods

because the debugging information for an inlined method is

typically larger than the inline-expanded code. Therefore,

the debugging information grows faster with more aggres-

sive inlining than the compiled code.

The total space overhead for debugging is reasonable. In the

standard system, debugging information uses slightly more

space (122%) than the instructions themselves; in the

system that optimizes everything, the overhead is 233%. In

other words, adding the debugging information increases

space usage (excluding the dependencies) by a factor of

between 2.2 and 3.3.

In order to be conservative, we have left out the space used

by the method headers even though they would also be

needed in a system without debugging. (The headers

contain the lookup key and various control information.) If

we include the headers, debugging increases space usage by

a factor of between 1.8 and 2.6.

The cost of supporting changes to running programs is

smaller. The dependency information occupies between 0.9

and 1.6 times the size of the instructions. Furthermore, the

‡ This grouping is a slight simplification. For example, the compiler
occasionally generates instructions just to support debugging. Also, a small
portion of the relocation information can be attributed to the code rather than
the debugging information. However, these simplifications do not
significantly distort the numbers presented here.

Category adaptive (default) optimized only

Machine instructions actual machine instruc-

tions and control infor-

mation

1.00 1.00

Method headers 0.56 0.43

Dependency links
to invalidate code after

programming changes
0.92 1.69

Scope descriptors

to recreate the source-

level state of optimized

code and to recompile

methods

0.42 1.09

Physical-to-virtual PC mapping 0.17 0.17

Relocation information for GC 0.24 0.39

Method objects, strings, etc. 0.39 0.69

Table 1: Space cost of debugging information (relative to instructions)

10

the compiler performed no global optimizations, the system

could provide expected behavior without deoptimization.

Zurawski and Johnson [ZJ91] describe a model for a

debugger (developed concurrently with this work) which

closely resembles ours, using “inspection points” and

dynamic deoptimization to provide expected behavior for

optimized code. However, the system does not use lazy

conversion. Furthermore, their definition of inspection

points allows asynchronous events such as user interrupts to

be delayed arbitrarily. Some of their ideas were imple-

mented for the Typed Smalltalk compiler [JGZ88], but the

system apparently could only run very small programs and

was not used in practice, unlike our system which is in daily

use.

Most of the other work on debugging optimized code places

the priority on optimization; the goal was to get as much

debugging as possible while preserving code efficiency

[CMR88, SW78]. Hennessy [Hen82] addresses the problem

of recovering the values of variables in the presence of

selected local and global code reordering optimizations. His

algorithms can usually detect when a variable has an incor-

rect value (in terms of the source program) and can some-

times reconstruct the source-level value. In contrast, we are

not willing to accept any debugging failures and therefore

do not perform optimizations which would create such situ-

ations at an interrupt point.

Zellweger [Zel83, Zel84] describes an interactive source-

level debugger for Cedar which handles two optimizations,

procedure inlining and cross-jumping, to provide expected

behavior in most cases. While her techniques can always

recover the source-level values of variables, they cannot

hide certain code location problems; for example, single-

stepping through optimized code would be difficult. Since

our system uses unoptimized code in these situations, we

are able to circumvent these problems.

LOIPE [Fei83] uses transparent incremental recompilation

for debugging purposes. For example, when the user sets a

breakpoint in some procedure, this procedure is converted

to unoptimized form to make debugging easier. However,

LOIPE cannot perform such transformations on active

procedures. Thus, if the program is suspended in an opti-

mized procedure, it is generally not possible to set a break-

point in this procedure or to continue execution by single-

stepping. To mitigate this problem, users were able to

specify the amount of optimization to be performed

(possibly impacting debuggability) and the amount of

debugging transparency needed (possibly affecting code

quality). As far as we know, most of the support for opti-

mized code in LOIPE was not actually implemented.

current representation of the dependencies contains signifi-

cant redundancies. An alternate implementation could prob-

ably reduce the space usage significantly [Cha92].

As a rough comparison, when compiling the SELF virtual

machine, a standard commercial C++ 2.1 compiler gener-

ated 55 Mbytes of debugging information on top of an

executable of 2.4 Mbytes, incurring an overhead of a factor

of 24. Apparently, the compiler produced multiple copies of

identical debugging information, one copy per object file,

and the linker included them all in the executable file. Using

the GNU C++ compiler and GNU-specific pragmas, we

were able to reduce the space overhead of debugging infor-

mation to 11.2 Mbytes, for a factor of 5.7.† While this

comparison should be taken with a grain of salt, it indicates

that despite the increased functionality, the space overhead

of debugging in our system is probably not higher than in

other systems.

During the design and implementation of our current data

structures, simplicity was considered more important than

space efficiency, and we did not optimize our representation

much. For example, our method headers and scope repre-

sentations use 32-bit words in many places where 16 or

even 8 bits would suffice. A reorganization of these data

structures could therefore result in significant savings. Other

techniques such as generating the debugging information on

demand by re-executing the optimizing compilation could

save even more space at the expense of longer pauses during

debugging interactions.

Furthermore, little of the debugging information needs to

remain in main memory at all times, and much of it can be

paged out. Ultimately, only the machine instructions need

be in main memory for working, debugged programs, thus

keeping real memory costs down to a fraction of the total

virtual memory costs.

8. Related work

The Smalltalk-80 system described by Deutsch and

Schiffman [DS84] pioneered the use of dynamic compila-

tion and interrupt points. To hide the effects of compilation

to native code, compiled methods included a mapping from

compiled code to source position. Activations normally

were created on the stack for run-time efficiency but were

converted on demand to the full-fledged activation objects

required by the language definition, and converted back

when needed for execution. As in our system, interrupts

were delayed until the next call or backward branch. Since

† GNU C++ allows the source-level debugging of optimized code but offers
only restricted functionality. Many optimizations are not transparent to the
programmer. The compiler version used for the measurements was GCC
1.94.7; version 2.0 generates a significantly larger executable.

11

Computer Science Department, Stanford University.

March 1992.

[CMR88] Deborah S. Coutant, Sue Meloy, and Michelle Ruscetta.

DOC: A Practical Approach to Source-Level Debugging

of Globally Optimized Code. In Proceedings of the

SIGPLAN ’88 Conference on Programming Language

Design and Implementation, pp. 125-134.

[CUL89] Craig Chambers, David Ungar, and Elgin Lee. An Effi-

cient Implementation of SELF, a Dynamically-Typed

Object-Oriented Language Based on Prototypes. In

OOPSLA ’89 Conference Proceedings, pp. 49-70, New

Orleans, LA, October, 1989. Published as SIGPLAN

Notices 24(10), October, 1989. Also published in Lisp

and Symbolic Computation 4(3), Kluwer Academic

Publishers, June, 1991.

[CU90] Craig Chambers and David Ungar. Iterative Type Anal-

ysis and Extended Message Splitting: Optimizing

Dynamically-Typed Object-Oriented Programs. In

Proceedings of the SIGPLAN ’90 Conference on

Programming Language Design and Implementation,

pp. 150-164, White Plains, NY, June, 1990. Published as

SIGPLAN Notices 25(6), June, 1990. Also published in

Lisp and Symbolic Computation 4(3), Kluwer Academic

Publishers, June, 1991.

[CU91] Craig Chambers and David Ungar. Making Pure Object-

Oriented Languages Practical. In OOPSLA ’91 Confer-

ence Proceedings, pp. 1-15, Phoenix, AZ, October,

1991. Published as SIGPLAN Notices 26(11),

November, 1991.

[DS84] L. Peter Deutsch and Allan M. Schiffman. Efficient

Implementation of the Smalltalk-80 System. In Confer-

ence Record of the Eleventh Annual ACM Symposium on

Principles of Programming Languages, pp. 297-302,

Salt Lake City, UT, January, 1984.

[Fei83] Peter H. Feiler. A Language-Oriented Interactive

Programming Environment Based on Compilation

Technology. Ph.D. dissertation, Carnegie-Mellon

University, 1983.

[HCU91] Urs Hölzle, Craig Chambers, and David Ungar. Opti-

mizing Dynamically-Typed Object-Oriented Program-

ming Languages with Polymorphic Inline Caches. In

ECOOP ’91 Conference Proceedings, pp. 21-38,

Geneva, Switzerland, July, 1991. Published as Springer

Verlag LNCS 512, 1991.

[Hen82] John L. Hennessy. Symbolic Debugging of Optimized

Code. ACM Transactions of Programming Languages

and Systems 4(3), July 1982.

[JGZ88] Ralph E. Johnson, Justin O. Graver, and Lawrence W.

Zurawski. TS: An Optimizing Compiler for Smalltalk.

In OOPSLA ’88 Conference Proceedings, pp. 18-26,

San Diego, CA, October, 1988. Published as SIGPLAN

Notices 23(11), November, 1988.

[SW78] H. Schlaeppi and H. Warren. Design of the FDS Interac-

tive Debugging System. IBM Research Report RC7214,

IBM Yorktown Heights, July 1978.

Tolmach and Appel [TA90] describe a debugger for ML

where the compiler always performs optimizations, but

where the program is automatically annotated with debug-

ging statements before compilation. To debug an optimized

program, the programmer has to manually recompile and re-

execute the program. Like unoptimized programs, annotated

programs run significantly slower than fully optimized

programs.

9. Conclusions

Global optimization need not impair source-level debug-

ging. The SELF system increases programmer productivity

by providing full source-level debugging of globally opti-

mized code. To the best of our knowledge, SELF is the first

system to do so; other systems either compromise on debug-

ging functionality or severely restrict the kinds of optimiza-

tions that can be performed. In SELF, the compiler can

perform optimizations such as constant folding, common

subexpression elimination, dead code elimination, proce-

dure integration, code motion, and instruction scheduling

without affecting debuggability.

Two techniques make this possible: lazy deoptimization and

interrupt points. The optimizations performed by the

compiler are hidden from the debugger by deoptimizing

code whenever necessary. Deoptimization supports single-

stepping, running a method to completion, replacing an

inlined method, and other operations, but only affects the

procedure activations which are actively being debugged;

all other code runs at full speed. Debugging information is

only needed at relatively widely-spaced interrupt points, so

that the compiler can perform extensive optimizations

between interrupt points without affecting debuggability.

Our debugging techniques is not specific to SELF and could

be applied to other programming languages as well.

Acknowledgments: We wish to thank Ole Agesen, Lars

Bak, Bay-Wei Chang, Peter Deutsch, David Keppel, and

John Maloney for their valuable comments on earlier drafts

of this paper.

References

[Cha87] David Chase. Garbage Collection and Other Optimiza-

tions. Ph.D. dissertation, Computer Science Depart-

ment, Rice University, 1987.

[Cha92] Craig Chambers. The Design and Implementation of the

SELF Compiler, an Optimizing Compiler for Object-

Oriented Programming Languages. Ph.D. dissertation,

12

[TA90] Andrew P. Tolmach and Andrew W. Appel. Debugging

Standard ML Without Reverse Engineering. In

Proceedings of the 1990 ACM Conference on Lisp and

Functional Programming, Nice, France, June 1990, pp.

1-12.

[US87] David Ungar and Randall B. Smith. SELF: The Power of

Simplicity. In OOPSLA ’87 Conference Proceedings,

pp. 227-241, Orlando, FL, October, 1987. Published as

SIGPLAN Notices 22(12), December, 1987. Also

published in Lisp and Symbolic Computation 4(3),

Kluwer Academic Publishers, June, 1991.

[Zel83] Polle T. Zellweger. An Interactive High-Level Debugger

for Control-Flow Optimized Programs. Xerox PARC

Technical Report CSL-83-1, January 1983.

[Zel84] Polle T. Zellweger. Interactive Source-Level Debugging

of Optimized Programs. Ph.D. dissertation, Computer

Science Department, University of California, Berkeley,

1984. Also published as Xerox PARC Technical Report

CSL-84-5, May 1984.

[ZJ91] Lawrence W. Zurawski and Ralph E. Johnson. Debug-

ging Optimized Code With Expected Behavior. Unpub-

lished manuscript, 1991.

